|
GiNaCRA
0.6.4
|
- Global GiNaC::denominator (long a, long b)
- O( digits( min(a, b) ) ) + integer division
- Global GiNaC::gcd (long a, long b)
- O( digits( min(a, b) ) )
- Global GiNaC::lcm (long a, long b)
- the complexity of gcd(a, b)
- Global GiNaC::lcm (const lst &l)
- linearly (in the length of l) many calls of GiNaC::lcm
- Global GiNaC::numerator (long a, long b)
- O( digits( min(a, b) ) ) + one integer division
- Global GiNaC::signedSubresultants (const ex &A, const ex &B, const symbol &sym)
- O( deg(A)*deg(B) )
- Global GiNaC::signedSubresultantsCoefficients (const ex &A, const ex &B, const symbol &sym)
- O( deg(A)*deg(B) )
- Global GiNaCRA::CAD::addPolynomial (const UnivariatePolynomial &p, const vector< GiNaC::symbol > &v, unsigned setting=DEFAULT_CADSETTING)
- O( 2^(2^mVariables.size()) ) many polynomials could be generated during the initial elimination
- Global GiNaCRA::CAD::addPolynomials (InputIterator first, InputIterator last, const vector< GiNaC::symbol > &v, unsigned setting=DEFAULT_CADSETTING)
- O( 2^(2^variables.size()) ) many polynomials could be generated during the elimination
- Global GiNaCRA::CAD::CAD (const UnivariatePolynomialSet &s, const vector< symbol > &v, CADSettings setting=CADSettings::getSettings())
- O( 2^(2^v.size()) ) many polynomials could be generated during the initial elimination
- Global GiNaCRA::CAD::elimination (const UnivariatePolynomial &p, const UnivariatePolynomial &q, const symbol &variable, UnivariatePolynomialSet &eliminated)
- O( deg(P)^2 ) subresultant computations. The degree of the output is bound by O(max(deg(P),deg(Q))^2)!
- Global GiNaCRA::CAD::elimination (const UnivariatePolynomial &p, const symbol &variable, UnivariatePolynomialSet &eliminated)
- O ( deg(P) ) subresultant computations. The degree of the output is bound by O(deg(P)^2)!
- Global GiNaCRA::CAD::eliminationSet (const UnivariatePolynomialSet &P, const symbol &nextVariable)
- O( m^2 * d^2 ) where m is the size of P and d the maximum degree of the polynomials in P
- Global GiNaCRA::CAD::samples (const RationalUnivariatePolynomial &p, SampleList ¤tSamples, CADSettings settings=CADSettings::getSettings())
- linear in the number of roots of
p
plus the complexity of RealAlgebraicNumberFactory::realRoots( p )
- Global GiNaCRA::CAD::samples (const list< RealAlgebraicNumberPtr > &roots, SampleList ¤tSamples)
- linear in
roots.size()
- Global GiNaCRA::CAD::samples (const UnivariatePolynomial &p, const list< RealAlgebraicNumberPtr > &sample, const list< symbol > &variables, SampleList ¤tSamples, CADSettings settings=CADSettings::getSettings())
- linear in the number of roots of
p
plus the complexity of RealAlgebraicNumberFactory::realRoots( p )
- Global GiNaCRA::CAD::samples (const list< RationalUnivariatePolynomial > &polynomials, SampleList ¤tSamples)
- linear in the number of common roots of
polynomials
plus the accumulated complexities of RealAlgebraicNumberFactory::realRoots
calls.
- Global GiNaCRA::CAD::truncation (const UnivariatePolynomial &P)
- O ( deg(P) )
- Global GiNaCRA::CAD::truncation (const UnivariatePolynomialSet &P)
- O( |P| * max_deg(P) )
- Global GiNaCRA::MultivariateMonomialMR::tdeg () const
- constant
- Global GiNaCRA::MultivariatePolynomialMR::nrOfTerms () const
- constant
- Global GiNaCRA::OpenInterval::sample () const
- O( lcm( denominator( Left() ) * denominator( Right() ) )^2 )
- Global GiNaCRA::RealAlgebraicNumber::approximateValue () const
- constant
- Global GiNaCRA::RealAlgebraicNumberIR::approximateValue () const
- constant
- Global GiNaCRA::RealAlgebraicNumberIR::refine (RealAlgebraicNumberSettings::RefinementStrategy strategy=RealAlgebraicNumberSettings::DEFAULT_REFINEMENTSTRATEGY)
- constant
- Global GiNaCRA::RealAlgebraicNumberIR::refineAvoiding (numeric n)
- constant
- Global GiNaCRA::RealAlgebraicNumberIR::sampleValue () const
- constant
- Global GiNaCRA::RealAlgebraicNumberNR::approximateValue () const
- constant
- Global GiNaCRA::SampleList::insert (InputIterator first, InputIterator last)
- at most logarithmic in the size of the list
- Global GiNaCRA::SampleList::insert (const RealAlgebraicNumberPtr &r)
- at most logarithmic in the size of the list
- Global GiNaCRA::SampleList::insert (const SampleList &l)
- at most logarithmic in the size of this list and linear in the size of l
- Global GiNaCRA::SampleList::pop ()
- at most linear in the size of the list
- Global GiNaCRA::SampleList::popNonroot ()
- at most linear in the size of the list
- Global GiNaCRA::SampleList::popNR ()
- at most logarithmic in the size of the list and linear in the number of roots in the list
- Global GiNaCRA::SampleList::popRoot ()
- at most linear in the size of the list
- Global GiNaCRA::SampleList::simplify ()
- logarithmic in the number
- Global GiNaCRA::SymbolDB::getSymbolList () const
- linear
- Global GiNaCRA::SymbolDB::getSymbolVector () const
- linear
- Global GiNaCRA::SymbolDB::operator[] (const symbol &v) const
- O( log(n) ) where n is the number of variables
- Global GiNaCRA::SymbolDB::SymbolDB (std::string stdname)
- O( n*log(n) ) where n is the number of variables
- Global GiNaCRA::UnivariatePolynomial::nonzeropart () const
- linear in degree()
- Global GiNaCRA::UnivariatePolynomial::subresultants (const UnivariatePolynomial &a, const UnivariatePolynomial &b, const subresultantStrategy strategy=GENERIC_SUBRESULTANTSTRATEGY)
- O( deg(a)*deg(b) )